学坛作文网

初中数学《勾股定理》教案

2021-10-29 10:57:12 30

初中数学《勾股定理》教案模板(通用5篇)

  作为一位优秀的人民教师,时常会需要准备好教案,教案有助于学生理解并掌握系统的知识。优秀的教案都具备一些什么特点呢?下面是小编为大家整理的初中数学《勾股定理》教案模板(通用5篇),希望对大家有所帮助。

  初中数学《勾股定理》教案1

  教学目标

  1、知识与技能目标

  用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用。

  2、过程与方法

  让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系。

  3、情感态度与价值观

  在探索勾股定理的过程中,体验获得成功的快 乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久化的思想,激励学生发奋 学习。

  教学重点了结勾股定理的由,并能用它解决一些简单的问题。

  教学难点:勾股定理的发现

  教学准备:多媒体

  教学过程:

  第一环节:创设情境,引入新(3分钟,学生观察、欣赏)

  内容:2002年世界数学家大会在我国北京召开,

  投影显示本届世界数学家大会的会标:

  会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”

  的图作为与“外星人”联系的信号。今天我们就一同探索勾股定理。(板书 题)

  第二环节:探索发现勾股定理(15分钟,学生独立观察,自主探究)

  1。探究活动一:

  内容:(1)投影显示如下地板砖示意图,让学生初步观察:

  (2)引导学生从面积角度观察图形:

  问:你能发现各图中三个正 方形的面 积之间有何关系吗?

  学生通过观察,归纳发现:

  结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。

  2。探究 活动二:

  由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?

  (1)观察下面两幅图:

  (2)填表:

  A 的面积

  (单位面积)B的面积

  (单位面积)C的面积

  (单位面积)

  左图

  右图

  (3)你是怎样得到正方形C的面积的?与同伴交流。(学生可能会做出多种方法,教师应给予充分肯定。)

  (4)分析填表的数据,你发现了什么?

  学生通过分析数据,归纳出:

  结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。

  3。议一议:

  内容:(1)你能用直角三角形的边长 、 、 表示上图中正方形的面积吗?

  (2)你能发现直角三角形三边长度之间存在什么关系吗?

  (3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度。2中发现的规律对这个三角形仍然成立吗?

  勾股定理(gou-gu theorem):

  如果直角三角形两直角边长分别为 、 ,斜边长为 ,那么即直角三角形两直角边的平方和等于斜边的平方。

  数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名。

  第三环节: 勾股定理的简单应用(7分钟,学生合作探究)

  内容:

  例 如图所示,一棵大树在一次强烈台风中于离

  地面10m处折断倒下,

  树顶落在离树根24m处. 大树在折断之前高多少?

  (教师板演解题过程)

  第四环节:巩 固练习(10分钟,学生先独立完成,后全班交流)

  1、列图形中未知正方形的面积或未知边的长度:

  2、生活中的应用:

  小明妈妈买了一部29英寸(74厘米)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得 一定是售货员搞错了。你同意他的想法吗?你能解释这是为什么吗?

  第五环节:堂小结(3分钟,师生对答,共同总结)

  内容:教师提问:

  1。这一节我们一起学习了哪些知识和思想方法?

  2。对这些内容你有什么体会?请与你的同伴交流。

  在学生自由发言的基础上,师生共同总结:

  1。知识:勾股定理:如果直角三角形两直角边长分别为a、b,斜边长为c,那么 .

  2。方法:① 观察—探索—猜想—验证—归纳—应用;

  ② 面积法;

  ③ “割、补、拼、接”法.

  3。思想:① 特殊—一般—特殊;

  ② 数形结合思想。

  第六 环节:布置作业(2分钟,学生分别记录)

  内容:

  作业:1。教科书习题1.1;

  2。《读一读》——勾股世界;

  3。观察下图,探究图中三角形的三边长是否满足 .

  要求:A组(学优生):1、2、3

  B组(中等生):1、2

  C组(后三分之一生):1

  板书设计:见电子屏幕

  教学反思:

  初中数学《勾股定理》教案2

  教学目标

  1、知识与技能目标

  学会观察图形,勇于探索图形间的关系,培养学生的空间观念。

  2、过程与方法

  (1)经历一般规律的探索过程,发展学生的抽象思维能力。

  (2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

  3、情感态度与价值观

  (1)通过有趣的问题提高学习数学的兴趣。

  (2)在解决实际问题的过程中,体验数学学习的实用性。

  教学重点:

  探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题。

  教学难点:

  利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。

  教学准备:

  多媒体

  教学过程:

  第一环节:创设情境,引入新课(3分钟,学生观察、猜想)

  情景:

  如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?

  第二环节:合作探究(15分钟,学生分组合作探究)

  学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算。

  学生汇总了四种方案:

  (1) (2) (3)(4)

  学生很容易算出:情形(1)中A→B的路线长为:AA’+d,情形(2)中A→B的路线长为:AA’+πd/2所以情形(1)的路线比情形(2)要短。

  学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,前三种情形A→B是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)最短。

  如图:

  (1)中A→B的路线长为:AA’+d;

  (2)中A→B的路线长为:AA’+A’B>AB;

  (3)中A→B的路线长为:AO+OB>AB;

  (4)中A→B的路线长为:AB.

  得出结论:利用展开图中两点之间,线段最短解决问题。在这个环节中,可让学生沿母线剪开圆柱体,具体观察。接下来后提问:怎样计算AB?

  在Rt△AA′B中,利用勾股定理可得,若已知圆柱体高为12c,底面半径为3c,π取3,则.

  第三环节:做一做(7分钟,学生合作探究)

  教材23页

  李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,

  (1)你能替他想办法完成任务吗?

  (2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?

  (3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?

  第四环节:巩固练习(10分钟,学生独立完成)

  1。甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6/h的速度向正东行走,1小时后乙出发,他以5/h的速度向正北行走。上午10:00, 甲、乙两人相距多远?

  2。如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离。

  3。有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒有多长?

  第五环节 课堂小结(3分钟,师生问答)

  内容:

  如何利用勾股定理及逆定理解决最短路程问题?

  初中数学《勾股定理》教案3

  一、例题的意图分析

  例1(P83例2)让学生养成利用勾股定理的逆定理解决实际问题的意识。

  例2(补充)培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。

  二、课堂引入

  创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。

  三、例习题分析

  例1(P83例2)

  分析:⑴了解方位角,及方位名词;

  ⑵依题意画出图形;

  ⑶依题意可得PR=12×1.5=18,PQ=16×1.5=24,QR=30;

  ⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°;

  ⑸∠PRS=∠QPR-∠QPS=45°。

  小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。

  例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。

  分析:⑴若判断三角形的形状,先求三角形的三边长;

  ⑵设未知数列方程,求出三角形的三边长5、12、13;

  ⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形。

  解略。

  四、课堂练习

  1。小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是。

  2。如图,在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A、B、C三点能否构成直角三角形?为什么?

  3。如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向

  初中数学《勾股定理》教案4

  [教学分析]

  勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活”正是这章书所体现的主要思想。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比较、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。

  本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。

  [教学目标]

  一、 知识与技能

  1、探索直角三角形三边关系,掌握勾股定理,发展几何思维。

  2、应用勾股定理解决简单的实际问题

  3学会简单的合情推理与数学说理

  二、 过程与方法

  引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步发展合作交流能力和数学表达能力,并感受勾股定理的应用知识。

  三、 情感与态度目标

  通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。

  四、 重点与难点

  1探索和证明勾股定理

  2熟练运用勾股定理

  [教学过程]

  一、创设情景,揭示课题

  1、教师展示图片并介绍第一情景

  以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。

  周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度.夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘.得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”

  2、教师展示图片并介绍第二情景

  毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。

  二、师生协作,探究问题

  1、现在请你也动手数一下格子,你能有什么发现吗?

  2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?

  3、你能得到什么结论吗?

  三、得出命题

  勾股定理:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么,即直角三角形两直角边的平方和等于斜边的平方。解释: 由于我国古代把直角三角形中较短的直角边称为勾,较长的边称为股,斜边称为弦,所以,把它叫做勾股定理。

  四、勾股定理的证明

  赵爽弦图的证法(图2)

  第一种方法:边长为 的正方形可以看作是由4个直角边分别为 、,斜边为 的直角三角形围在外面形成的。因为边长为 的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式 ,化简得 。

  第二种方法:边长为 的正方形可以看作是由4个直角边分别为 、,斜边为 的

  角三角形拼接形成的(虚线表示),不过中间缺出一个边长为 的正方形“小洞”。

  因为边长为 的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式 ,化简得 。

  这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。

  五、应用举例,拓展训练,巩固反馈。

  勾股定理的灵活运用勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。

  例题:小明妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘长和46厘米宽,他觉得一定是售货员搞错了,你同意他的想法吗?你能解释这是为什么吗?

  六、归纳总结

  1、内容总结:探索直角三角形两直角边的平方和等于斜边的平方,利于勾股定理,解决实际问题

  2、方法归纳:数方格看图找关系,利用面积不变的方法。用直角三角形三边表示正方形的面积观察归纳注意画一个直角三角形表示正方形面积,再次验证自己的发现。

  七、讨论交流

  让学生发表自己的意见,提出他们模糊不清的概念,给他们一个梳理知识的机会,通过提示性的引导,让学生对勾股定理的概念豁然开朗,为后面勾股定理的应用打下基础。

  我们班的同学很聪明。大家很快就通过数格子发现了勾股定理的规律。还有什么地方不懂的吗?跟大家一起来交流一下。请同学们课后在反思天地中都发表一下自己的学习心得。

  初中数学《勾股定理》教案5

  一、教案背景概述:

  教材分析: 勾股定理是直角三角形的重要性质,它把三角形有一个直角的"形"的.特点,转化为三边之间的"数"的关系,它是数形结合的典范。它可以解决许多直角三角形中的计算问题,它是直角三角形特有的性质,是初中数学教学内容重点之一。本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。

  学生分析:

  1、考虑到三角尺学生天天在用,较为熟悉,但真正能仔细研究过三角尺的同学并不多,通过这样的情景设计,能非常简单地将学生的注意力引向本节课的本质。

  2、以与勾股定理有关的人文历史知识为背景展开对直角三角形三边关系的讨论,能激发学生的学习兴趣。

  设计理念:本教案以学生手中舞动的三角尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终, 让学生对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富文化内涵,体验勾股定理的探索和运用过程,激发学生学习数学的兴趣,特别是通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的民族自豪感和探究创新的精神。

  教学目标:

  1、 经历用面积割、补法探索勾股定理的过程,培养学生主动探究意识,发展合理推理能力,体现数形结合思想。

  2、 经历用多种割、补图形的方法验证勾股定理的过程,发展用数学的眼光观察现实世界和有条理地思考能力以及语言表达能力等,感受勾股定理的文化价值。

  3、 培养学生学习数学的兴趣和爱国热情。

  4、 欣赏设计图形美。

  二、教案运行描述:

  教学准备阶段:

  学生准备:正方形网格纸若干,全等的直角三角形纸片若干,彩笔、直角三角尺、铅笔等。

  老师准备:毕达哥拉斯、赵爽、刘徽等证明勾股定理的图片以及其它有关人物历史资料等投影图片。

  三、教学流程:

  (一)引入

  同学们,当你每天手握三角尺绘制自己的宏伟蓝图时,你是否想过:他们的边有什么关系呢?今天我们来探索这一小秘密。(板书课题:探索直角三角形三边关系)

  (二)实验探究

  1、取方格纸片,在上面先设计任意格点直角三角形,再以它们的每一边分别向三角形外作正方形,如图1

  设网格正方形的边长为1,直角三角形的直角边分别为a、b ,斜边为c ,观察并计算每个正方形的面积,以四人小组为单位填写下表:

  (讨论难点:以斜边为边的正方形的面积找法)

  交流后得出一般结论: (用关于a、b、c的式子表示)

  (三)探索所得结论的正确性

  当直角三角形的直角边分别为a 、b,斜边为c时, 是否一定成立?

  1、指导学生运用拼图、或正方形网格纸构造或设计合理分割(或补全)图形,去探索本结论的正确性:(以四人小组为单位进行)

  在学生所创作图形中选择有代表性的割、补图,展示出来交流讲解,并引导学生进行说理:

  如图2(用补的方法说明)

  师介绍:(出示图片)毕达哥拉斯,公元前约500年左右,古西腊一位哲学家、数学家。一天,他应邀到一位朋友家做客,他一进朋友家门就被朋友家的豪华的方形大理石地砖的形状深深吸引住了,于是他立刻找来尺子和笔又量又画,他发现以每块大理石地砖的相邻两直角边向三角形外作正方形,它们的面积和等于以这块大理石地砖的对角线为边向形外作正方形的面积。于是他回到家里立刻对他的这一发现进行了探究证明……,终获成功。后来西方人们为了纪念他的这一发现,将这一定理命名为"毕达哥拉斯定理"。1952年,希腊政府为了纪念这位伟大的数学家,特别选用他设计的这种图形为主图发行了一枚纪念邮票。(见课本52页彩图2—1,欣赏图片)

  如图3(用割的方法去探索)

  师介绍: (出示图片) 中国古代数学家们很早就发现并运用这个结论。早在公元前2000年左右,大禹治水时期,就曾经用过此方法测量土地的等高差,公元前1100年左右,西周的数学家商高就曾用"勾三、股四、弦五"测量土地,他们对这一结论的运用至少比古希腊人早500多年。公元200年左右,三国时期吴国数学家赵爽曾构造此图验证了这一结论的正确性。他的这个证明,可谓别具匠心,极富创新意识,他用几何图形的割、来证明代数式之间的相等关系,既严密,又直观,为中国古代以"形"证"数",形、数统一的独特风格树立了一个典范。他是我国有记载以来第一个证明这一结论的数学家。我国数学家们为了纪念我国在这方面的数学成就,将这一结论命名为"勾股定理"。(点题)

  20xx年,世界数学家大会在中国北京召开,当时选用这个图案作为会场主图,它标志着我国古代数学的辉煌成就。(见课本50页彩图,欣赏图片)

  如图4(构造新图形的方法去探索)

  师介绍:(出示图片)勾股定理是数学史上的一颗璀璨明珠,它的证明在数学史上屡创奇迹,从毕达哥拉斯到现在,吸引着世界上无数的数学家、物理学家、数学爱好者对它的探究,甚至政界要人——美国第20任总统加菲尔德,也加入到对它的探索证明中,如图是他当年设计的证明方法。据说至今已经找到的证明方法有四百多种,且每年还会有所增加。(若有时间可以继续出示学生中有价值的图片进行讨论),有兴趣的同学课后可以继续探索……

  四、总结:

  本节课学习的勾股定理用语言叙说为:

  五、作业:

  1、继续收集、整理有关勾股定理的证明方的探索问题并交流。

  2、探索勾股定理的运用。

同类文章
校园安全知识的教案

校园安全知识的教案

校园安全知识的教案  作为一名优秀的教育工作者,总不可避免地需要编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。优秀的教案都具备一些什么特点呢

小班安全过暑假教案

小班安全过暑假教案(通用5篇)  作为一名专为他人授业解惑的人民教师,时常需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。教案要怎么写呢?下面是小编整理的小班安全过暑假教案(通用5篇)
《诗经》教学教案

《诗经》教学教案

《诗经》两首教学教案  第一课时  一、《诗经》两首教学目标  1.了解《诗经》有关常识及其在文学史上的地位;  2.把握《诗经》赋比兴的艺术手法和重章叠句、反复咏叹的形式特点;  3
中班教案

中班教案

【实用】中班教案锦集六篇  作为一名辛苦耕耘的教育工作者,就不得不需要编写教案,教案是教学蓝图,可以有效提高教学效率。教案应该怎么写才好呢?下面是小编精心整理的中班教案6篇,仅供参考

暑假安全的教案

2021关于暑假安全的教案范文(精选6篇)  在教学工作者实际的教学活动中,就不得不需要编写教案,教案有助于学生理解并掌握系统的知识。那么优秀的教案是什么样的呢
大班数学活动铺地板教案

大班数学活动铺地板教案

大班数学活动铺地板教案  作为一名专为他人授业解惑的人民教师,通常需要用到教案来辅助教学,教案是教学活动的总的组织纲领和行动方案。教案应该怎么写才好呢?下面是小编为大家整理的大班数学活动铺地板教案

暑假防溺水安全教育教案

2021年暑假防溺水安全教育教案范文(精选7篇)  作为一名为他人授业解惑的教育工作者,通常需要用到教案来辅助教学,借助教案可以提高教学质量,收到预期的教学效果。那么大家知道正规的教案是怎么写的吗
再塑生命的人优秀教案

再塑生命的人优秀教案

再塑生命的人优秀教案  作为一名辛苦耕耘的教育工作者,总不可避免地需要编写教案,借助教案可以更好地组织教学活动。我们应该怎么写教案呢?以下是小编整理的再塑生命的人优秀教案,仅供参考,欢迎大家阅读
幼儿园幼儿园大班语言教案《秋天的雨》含反思

幼儿园幼儿园大班语言教案《秋天的雨》含反思

幼儿园幼儿园大班语言教案《秋天的雨》含反思  作为一位优秀的人民教师,通常需要用到教案来辅助教学,编写教案有利于我们科学、合理地支配课堂时间。教案应该怎么写呢

暑假安全班会教案

暑假安全班会教案  作为一名优秀的教育工作者,总归要编写教案,借助教案可以提高教学质量,收到预期的教学效果。教案应该怎么写才好呢?以下是小编收集整理的暑假安全班会教案,欢迎大家分享